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Abstract

With risk-averse workers and uninsurable earnings shocks, competitive markets

allocate too few workers to jobs with high earnings uncertainty. Using an equi-

librium Roy model with incomplete markets, we show that in competitive equi-
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1 Introduction

Misallocation of talent across occupations lowers productivity. This paper is the first

to study how incomplete markets shape the aggregate allocation of talent and aggre-

gate output. Through the prism of a Roy model, we show that talent is misallocated

in a laissez faire competitive equilibrium. Risk averse workers avoid risky occupations

when insurance opportunities are absent, unless wages are sufficiently high. But at

high wages the demand for workers is low and as a result risky occupations are in-

efficiently small. Therefore, output gains can be achieved by reallocating workers

across occupations.

Our general equilibrium Roy model features a labor market where risk-averse

workers self-select into an occupation based on their comparative and absolute ad-

vantages. Human capital (for example acquired through specialized training) is spe-

cific to an occupation. Workers’ occupational choices determine the level of output

in the economy. We compare the level of production in competitive equilibrium to

the first best: the allocation obtained by an unconstrained planner which maximizes

welfare.

1.1 Related Literature

Our theoretical approach uses the insights of Roy (1951) and models workers’ occu-

pational choice under uncertainty. Thus, it connects to models of occupational choice

used in macroeconomics and labor economics. Examples include Kambourov and

Manovskii (2008), Jovanovic (1979), Miller (1984) and Papageorgiou (2014). We model

the interplay between skills and risk so we complement their findings as well as the

ones of Cubas and Silos (2017), Hawkins and Mustre del Rio (2012), Dillon (2016),

and Neumuller (2015). Our paper also relates to the macroeconomics literature on

the misallocation of human capital (see for example Vollrath (2014) and Hsieh, Hurst,

Jones, and Klenow (2019), Buera, Kaboski, and Shin (2011)).
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2 Model

The economy is populated by a mass of size one of workers who live for one period.

They are endowed with a unit of time which they inelastically supply as labor in

either of two occupations (R for risky and S for safe). Workers value the consumption

of a final good produced according to the following CES technology.

Y = [θNν
R + (1− θ)Nν

S ]
1/ν (1)

where NR and NS are the aggregate amount of efficiency units of labor in the risky

and safe occupations, respectively, 0 < θ < 1 governs the share of each occupation in

total output and ν is the elasticity of substitution between the two occupations.

Workers finance final goods with labor earnings since they don’t save and start

with zero wealth at birth. In our context, career risk is permanent for workers, and

their preferences are captured by a constant relative risk aversion utility function.

Individuals ranks consumption levels c according to u(c) = c1−γ

1−γ , with γ > 1.

Workers are endowed with a vector of occupation-specific abilities. Abilities can

be correlated across occupations and as a result some workers are likely to excel

at several professions. In what follows, the vector of abilities is denoted by X =

(XR, XS). We model the dependence between the two abilities through a Gumbel

copula of two Fréchet random variables:

F(xR, xS) = Pr(XR < xR, XS < xS) = exp

{
−
[

∑
i∈R,S

(Tα
i x−α

i )1/(1−ρ)

](1−ρ)
}

(2)

The parameter Ti is the scale parameter. The parameter, 0 < ρ < 1 controls the

dependence across ability levels for a given worker. When ρ approaches 1 there is

perfect dependence between the two ability draws. When it approaches zero, abilities

are uncorrelated. The parameter α drives the dispersion and it is common to all
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abilities. 1. Given (2), the marginal distributions are standard univariate Fréchet with

cdf

Pr(Xi < xi) = exp

{
−
(

xi

Ti

)−α
}

(3)

We derive this result in Section A of the Online Appendix.

2.1 Occupational Choice and Sorting

Given a realization of X = (xR, xS), a worker chooses between two careers. In one,

earnings are less predictable, with occupation R being riskier. Uncertainty arises from

shocks affecting a worker’s ability in each occupation, following distributions Fi(y)

for occupations i = R, S. We assume these shocks are log-normally distributed with

a mean of one and a variance of var(log(yi)) = σ2
i . Occupational choice depends

on predetermined abilities X but is independent of subsequent job-related shocks.

To formalize the occupational decision given X and the market prices for abilities

in each occupation, wR and wS, the value of working in occupation i is denoted by

Vi(xi, wi) and it is equal to:

Vi(xi, wi) = max
c

∫
y∈Y

c1−γ

1− γ
dFi(y) (4)

subject to c ≤ xi ey wi

Among the two alternative careers, the worker picks the one with the highest

value. V(X, wR, wS) = max {VR(xR, wR), VS(xR, wS)} (5)

Given that only two occupations are available, worker sorting in our environment is

summarized by the share pR of workers choosing the risky occupation.

Proposition 2.1 The share of workers choosing occupation R,pR, is given by

1α > 2 so that variance is finite.

4



pR =
T

α
(1−ρ)

R |ΩR(wR)|
α

(1−ρ)(1−γ)

∑
i∈{R,S}

T
α

(1−ρ)

i |Ωi(wi)|
α

(1−ρ)(1−γ)

(6)

where Ωi =
∫

y∈Y

(eywi)
1−γ

1−γ dFi(y).

Section A (online Appendix) offers a proof of this proposition. Using market

wages, we determine the likelihood that the risky occupation’s value exceeds the

safe occupation’s value for each ability level. Averaging these probabilities using the

distribution of abilities in the safe occupation yields the expression.

Once we determine the probability of a worker selecting occupation R and thus

the number of workers in this occupation, we define the abilities of these workers to

calculate the total effective labor input.

Proposition 2.2 The amount of efficiency units in occupation i is

Ni = piE(x̃i) = p
α−(1−ρ)

α
i TiΓ

(
1− 1

α

)

where E(x̃i) is the average ability of workers who choose occupation i (i.e. post-sorting).

The result follows by first noting that Ni = pi x̃i, where x̃i is the average ability of

a workers who choose occupation i. In section B of the online Appendix we offer a

proof of this proposition. Note that Ni = p
−(1−ρ)

α
i piTiΓ

(
1− 1

α

)
= p

−(1−ρ)
α

i E(xi) where

E(xi) is the average ex-ante ability (i.e. pre-sorting). Given that α > 2 and 0 < ρ < 1,

it is easy to see that average skills of workers after sorting are higher than ex-ante

average skills. This is the direct consequence of sorting given workers select based on

their comparative advantage.

2.2 The Competitive Equilibrium Allocation

A competitive equilibrium is a pair of employment levels NR and NS, and a pair of

wages wR and wS, and an associated level of output YCE. Employment depends on
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workers’ optimal choices, and wages match the marginal product of labor in each

occupation due to perfect competition. Thus, using the expressions derived in Propo-

sitions 2.1 and 2.2, and the marginal products of each type of labor, we can derive

closed-form expressions for NR and NS. Substituting into the production function we

obtain the following result.

Proposition 2.3 The competitive equilibrium level of output YCE is given by

YCE =

{
θTν

R

1 +
(

TS

TR

) αν((1−ρ)−α)
(ν((1−ρ)−α)+α

)((1−ρ)−α) (1− θ

θ

) α
ν((1−ρ)−α)+α

(
ES

ER

) α
(ν((1−ρ)−α)+α)(1−γ)


ν((1−ρ)−α)

α

+

(1− θ)Tν
S

1 +
(

TR

TS

) −αν((1−ρ)−α)
(ν((1−ρ)−α)+α

)((1−ρ)−α) ( θ

1− θ

) α
ν((1−ρ)−α)+α

(
ER

ES

) α
(ν((1−ρ)−α)+α)(1−γ)


ν((1−ρ)−α)

α }1/ν

Γ
(

1− 1
α

)

where Ei = E(eyi(1−γ)) = e(1−γ)(−
σ2

i γ

2 )

A detailed derivation of this result can be found in section C of the online Ap-

pendix.

3 The First-Best Allocation

We assess misallocation by comparing the competitive equilibrium to a frictionless

economy with complete markets. We analyze resource allocation from a planner’s

perspective, who operates without constraints and aims to maximize output to max-

imize the welfare of a newborn with unknown abilities and shocks. The planner

achieves maximum welfare by distributing resources evenly among all workers when

the economy maximizes output (as there is no leisure nor savings).

Our planner allocates workers across the two occupations after observing each

worker’s ability. The planner does not observe the shocks that workers receive once

they begin work in an occupation. We use Proposition 2.2 to solve the social planner’s
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problem, which reduces to finding the masses of workers in occupations R and S, pFB
R

and pFB
S that maximize output.

max
pFB

R ,pFB
S

[
θTν

R

(
pFB

R

)ν
α−(1−ρ)

α
+ (1− θ)Tν

S

(
pFB

S

)ν
α−(1−ρ)

α

]1/ν

Γ
(

1− 1
α

)
(7)

subject to,

pFB
R + pFB

S = 1 (8)

From the first order conditions we can solve for pFB
R and pFB

S in closed form. We then

use Proposition 2.2 and the production function to obtain the efficient output, given

by:

YFB =

[
θTν

R

 (1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


ν

α−(1−ρ)
α

+

(1− θ)Tν
R

 1
(1−θ)

θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


ν

α−(1−ρ)
α ]1/ν

Γ
(

1− 1
α

) (9)

In Section D of the online Appendix we provide more details about the derivation.

3.1 Discussion

How does misallocation change with preferences or abilities? In Figure 1 we plot the

log of the ratio of YFB/YCE (in percentage terms) for different values of the parameters

of interest.

Recall that ρ governs the degree of comparative advantage. For instance, when ρ

is near one, a worker excelling in one occupation likely excels in the other, leading to

minimal worker selection based on abilities. Worker selection mitigates misallocation.

As the elasticity of substitution in production, denoted by ν, increases, so does

misallocation (second figure). This is because higher substitutability between two
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occupations leads to a smaller wage premium, due to wages being less responsive

to worker allocation changes. Consequently, in a competitive equilibrium, the safer

occupation becomes disproportionately large, resulting in lower overall output. Con-

versely, when elasticity decreases, the riskier occupation offers higher wages, attract-

ing more workers and altering the allocation.

Figure 1
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Notes: The two figures show how the degree of misallocation varies for different values of three parameters: (a) ρ,
(b) ν. Misallocation is measured by the percentage deviation of the competitive equilibrium output (YCE) from the
first best (YFB).

4 Conclusions

The absence of insurance markets against permanent earnings shocks influences

workers’ occupational choices and talent allocation, impacting aggregate productiv-

ity. In competitive equilibria, talent is misallocated as workers shy away from risky

occupations, while a social planner would allocate more workers to these roles. The

extent of misallocation increases with risk aversion and decreases with comparative

advantage.

This paper presents a novel perspective on the relationship between labor market

risks and overall human capital levels. We simplify labor market dynamics and in-

dividual career choices, acknowledging that many real-world barriers affect occupa-

tional choices and mobility. Our findings aim to spur further research that considers

these factors.

8



Declaration of Interest

None

References

Buera, F. J., J. P. Kaboski, and Y. Shin (2011): “Finance and Development: A Tale of

Two Sectors,” American Economic Review, 101(5), 1964–2002.

Cubas, G., and P. Silos (2017): “Career Choice and the Risk Premium in the Labor

Market,” Review of Economic Dynamics, 26, 1–18.

Dillon, E. W. (2016): “Risk and Return Tradeoffs in Lifetime Earnings,” Discussion

paper, Arizona State University, Department of Economics.

Hawkins, W. B., and J. Mustre del Rio (2012): “Financial frictions and occupational

mobility,” Discussion paper.

Hsieh, C., E. Hurst, C. I. Jones, and P. J. Klenow (2019): “The Allocation of Talent and

U.S. Economic Growth,” Econometrica, 87(5), 1439–1474.

Jovanovic, B. (1979): “Job Matching and the Theory of Turnover,” Journal of Political

Economy, 87(5), 972–990.

Kambourov, G., and I. Manovskii (2008): “Rising Occupational and Industry Mobility

in the United States: 1968-97,” International Economic Review, 49(1), 41–79.

Miller, R. A. (1984): “Job Matching and Occupational Choice,” Journal of Political

Economy, 92(6), 1086–1120.

Neumuller, S. (2015): “Inter-industry wage differentials revisited: Wage volatility and

the option value of mobility,” Journal of Monetary Economics, 76(C), 38–54.

9



Papageorgiou, T. (2014): “Learning Your Comparative Advantages,” Review of Eco-

nomic Studies, 81(3), 1263–1295.

Roy, A. D. (1951): “Some Thoughts on the Distribution of Earnings,” Oxford Economic

Papers, 3(2), 135–146.

Vollrath, D. (2014): “The efficiency of human capital allocations in developing coun-

tries,” Journal of Development Economics, 108(C), 106–118.

10



Online Appendix (Not for Publication)

A Proof of Proposition 2.1

Proof To verify that expression, note that pR = Prob(VR > VS). We can rewrite

Vi(xi, wi) as,

Vi(xi, wi) = x1−γ
i

∫
y∈Y

(eywi)
1−γ

1− γ
dFi(y) (10)

Relabeling the integral as Ωi, further rewrite Vi(xi, wi) as x1−γ
i Ωi. Note that

Vi(xi, wi) < 0 for any xi, wi > 0. Since the occupational choice entails picking the

maximum between VR(xR, wR) and VS(xS, wS), the choice is equivalent to choosing

the minimum between |VR(xR, wR)| and |VS(xS, wS)|. Therefore, Pr(VR > VS) =

Pr(|VR| < |VS|) = Pr(x1−γ
R |ΩR| < x1−γ

S |ΩS|) = Pr(x1−γ
R < x1−γ

S
|ΩS|
|ΩR|

). Since γ > 1, 2

Pr(VR > VS) = Pr
(

xR(|ΩR|/|ΩS|)1/(1−γ) > xS

)
=
∫ ∞

0
FxR(x, x(|ΩR|/|ΩS|)1/(1−γ))dx.

The derivative of the joint cumulative density function (2) with respect to xR is,

FxR(xR, xS) = exp

{
−
[

∑
i∈R,S

(Tα/(1−ρ)
i x−α/(1−ρ)

i )

](1−ρ)
}

[
∑

i∈R,S
(Tα/(1−ρ)

i x−α/(1−ρ)
i )

]−ρ

αTα/(1−ρ)
R x−α/(1−ρ)−1

R

(11)

Substituting for xR = x and xS = x |ΩR|
|ΩS|

1/(1−γ)
, defining κi to be |ΩR|

|Ωi|
1/(1−γ)

and

integrating gives,3 ∫
FxR(x, x(|ΩR|/|ΩS|)1/(1−γ)dx =

=
∫

exp

{
−
[

∑
i∈R,S

(
xκi

Ti

)−α/(1−ρ) ](1−ρ)
}[

∑
i∈R,S

(
xκi

Ti

)−α/(1−ρ) ]−ρ

αT
α

(1−ρ)

R x−
α

(1−ρ)
−1dx =

2To understand the next equality, note that

FxR(xR, xS) =
d

dxR

∫ xR

0

∫ xS

0
f (z, w)dzdw =

∫ xS

0
f (z, xR)dz.

We use standard notation f (xR, xS) for the joint probability density function.
3The lower and upper integration limits are understood to be 0 and ∞.
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=
∫

exp

{
−
[

∑
i∈R,S

(
xκi

Ti

)−α/(1−ρ) ](1−ρ)
}[

∑
i∈R,S

(
κi

Ti

)− α
(1−ρ)

]−ρ

αT
α

(1−ρ)

R x
−α

(1−ρ)
(−ρ)x−

α
(1−ρ)

−1dx =

=

[
∑

i∈R,S

(
κi

Ti

)− α
(1−ρ)

]−1

T
α

(1−ρ)

R

∫
exp

{
−
[

∑
i∈R,S

T
α

(1−ρ)

i κ
− α

(1−ρ)

i x−
α

(1−ρ)

](1−ρ)
}

[
∑

i∈R,S

(
κi

Ti

)− α
(1−ρ)

](1−ρ)

αx−α−1dx =

=

[
∑

i∈R,S

(
κi

Ti

)− α
(1−ρ)

]−1

T
α

(1−ρ)

R

∫
f (x)dx = T

α
(1−ρ)

R

[
∑

i∈R,S

(
κi

Ti

)− α
(1−ρ)

]−1

(12)

Since κi equals |ΩR|
|Ωi|

1/(1−γ)
for i ∈ {R, S}, substitution yields,

pR =
T

α
(1−ρ)

R |ΩR(wR)|
α

(1−ρ)(1−γ)

∑i∈{R,S} T
α

(1−ρ)

i |Ωi(wi)|
α

(1−ρ)(1−γ)

(13)

B Proof of Proposition 2.2

Proof We denote by x̃i the average ability of a workers who choose occupation i.

Given that shocks that workers experience after they have chosen an occupation are

of mean equal to one, the amount of efficiency units in occupation i ∈ {R, S} is given

by Ni = pi x̃i. The distributional assumption on the joint distribution of X = (xR, xS)

implies that the post-sorting distribution of abilities is also Fréchet.

To derive this result we begin by defining the extreme value V∗ = mini

{
x1−γ

i |Ωi|
}

.

As a result for a given b > 0, Pr(V∗ > b) = Pr(x1−γ
i |Ωi| > b) = Pr(x1−γ

i >

b/|Ωi|) for all i, which in turn equals,

Pr
(

xi <

(
b
|Ωi|

)1/(1−γ))
for all i.

Using the joint cdf, that probability is given by,

F
(

b
|ΩR|

,
b
|ΩS|

)
= exp

{
−
[

∑
i∈R,S

T
α

(1−ρ)

i

(
b
|Ωi|

) −α
(1−ρ)(1−γ)

](1−ρ)
}

=

= exp

{
−
[

∑
i∈R,S

(
T

α
(1−ρ)

i |Ωi|
α

(1−ρ)(1−γ) b
−α

(1−ρ)(1−γ)

) ](1−ρ)
}

=
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= exp
{
−
[

T̂(1−ρ)
(
b

−α
(1−ρ)(1−γ)

)(1−ρ)
]}

. (14)

where T̂ = ∑
i∈R,S

T
α

(1−ρ)

i |Ωi|
α

(1−ρ)(1−γ) . Since Pr(V∗ > b) = 1− Pr(V∗ < b), the cdf of V∗

is given by,
Pr(V∗ < b) = 1− exp

{
−
[

T̂(1−ρ)b−α/(1−γ)

]}
. (15)

Note that this is the distribution for the extreme value V∗ = x∗1−γ|Ω∗| = mini x1−γ
i |Ωi|.

We are interested in the cdf of x∗, the distribution of abilities post-sorting. To obtain

that distribution, note that Pr(V∗ > b) = Pr
(
x∗ <

( b
|Ω∗|
)1/(1−γ))

= Pr(x∗ < b∗)

Using the first term in (14), that probability is given by,

Pr(x∗ < b∗) = exp

{
−
[

∑
i∈R,S

T
α

(1−ρ)

i

(
b
|Ωi|

) −α
(1−ρ)(1−γ)

](1−ρ)
}

=

= exp

{
−
[

T∗
−(1−ρ)

α b∗
]−α

}
(16)

where Ti
∗ = ∑

i∈R,S
T

α
(1−ρ)

i

(
|Ωi
∗|

|Ωi|

) −α
ρ(1−γ)

.

Equation (16) shows that the distribution of x∗, the ability of workers who have

chosen an occupation, is Fréchet. Its shape parameter is equal to α and its scale

parameter is T∗
(1−ρ)

α . The mean of this distribution is T∗
(1−ρ)

α Γ(1− 1
α ).

By letting |Ωi
∗| = |Ωi|, we have that

T∗i = T
α

(1−ρ)

i /pi

. Thus, the mean of that distribution can be written as Ti p
−(1−ρ)

α
i Γ(1− 1

α ). For occupa-

tion R, it is given by,
x̃R = E(xR) = TR p

−(1−ρ)
α

R Γ(1− 1/α), (17)

And for occupation S by,
x̃S = E(xS) = TS p

−(1−ρ)
α

S Γ(1− 1/α), (18)

Once we have E(x̃1) and E(x̃2) the result follows:

Ni = pi x̃i = Ti p
α−(1−ρ)

α
i Γ(1− 1/α), (19)
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C Proof of Proposition 2.3

To begin, note that from by combining 2.1 and 2.2, Ni, i ∈ {R, S} equals

Proof

Ni = Ti p
α−(1−ρ)

α
i Γ

(
1− 1

α

)
= Ti

 T
α

(1−ρ)

i Ω
α

(1−ρ)(1−γ)

i

T
α

(1−ρ)

R Ω
α

(1−ρ)(1−γ)

R + T
α

(1−ρ)

S Ω
α

(1−ρ)(1−γ)

S


α−(1−ρ)

α

Γ
(

1− 1
α

)
=

Ti

 ∑
j∈{R,S}

(
Tj

Ti

) α
(1−ρ)

(
Ωj

Ωi

) α
(1−ρ)(1−γ)


(1−ρ)−α

α

Γ
(

1− 1
α

)
(20)

Also note that the ratio of the two labor inputs in efficiency units is,

NR

NS
=

TR

TS

T
α

(1−ρ)

R Ω
α

(1−ρ)(1−γ)

R

T
α

(1−ρ)

S Ω
α

(1−ρ)(1−γ)

S


α−(1−ρ)

α

=

(
TR

TS

) α
(1−ρ)

(
ΩR

ΩS

) α−(1−ρ)
(1−ρ)(1−γ)

=

(
TR

TS

) α
(1−ρ)

(
w1−γ

R ER

w1−γ
S ES

) α−(1−ρ)
(1−ρ)(1−γ)

(21)

where Ei = E(eyi(1−γ)). In equilibrium, wages are equal to the marginal products

of the two types of labor. Given our aggregate technology,

Y =
[
θNν

R + (1− θ)Nν
S
]1/ν

we have that

wR =
[
θNν

R + (1− θ)Nν
S
]1/ν−1

θNν−1
R and wS =

[
θNν

R + (1− θ)Nν
S
]1/ν−1

(1− θ)Nν−1
S .

Thus,
wR

wS
=

(
θ

1− θ

)(
NR

NS

)ν−1

(22)

Substituting (22) into (21), we get

NR

NS
=

(
TR

TS

) α
(1−ρ)

(
θ

1− θ

) α−(1−ρ)
(1−ρ)

(
NR

NS

)−(ν−1) (1−ρ)−α
(1−ρ)

(
ER

ES

) α−(1−ρ)
(1−ρ)(1−γ)

(23)

Simplifying

NR

NS
=

(
TR

TS

) α
ν((1−ρ)−α)+α

(
θ

1− θ

) α−(1−ρ)
ν((1−ρ)−α)+α

(
ER

ES

) α−(1−ρ)
(ν((1−ρ)−α)+α)(1−γ)

(24)

Note from (20) that NR is,

NR = TR

[
1 +

(
TS

TR

) α
(1−ρ)

(
ΩS

ΩR

) α
(1−ρ)(1−γ)

] (1−ρ)−α
α

Γ
(

1− 1
α

)
(25)
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= TR

1 +

(
TS

TR

(
ΩR

ΩS

) 1
(γ−1)

) α
(1−ρ)


(1−ρ)−α

α

Γ
(

1− 1
α

)
(26)

and from (21)

NR
NS

= TR
TS

(
TS
TR

(
ΩR
ΩS

) 1
(γ−1)

) (1−ρ)−α
(1−ρ)

so that, TS
TR

(
ΩR
ΩS

) 1
(γ−1)

=
(

TS
TR

NR
NS

) (1−ρ)
(1−ρ)−α .

Substituting back into (26),

NR = TR

[
1 +

(
TSNR

TRNS

) α
(1−ρ)−α

] (1−ρ)−α
α

Γ
(

1− 1
α

)
=

[
1 +

(
TS

TR

) α
(1−ρ)−α

(
NR

NS

) α
(1−ρ)−α

] (1−ρ)−α
α

Γ
(

1− 1
α

)
(27)

Substituting for the value of the ratio of labor inputs given by (24)

NR = TR

1 +

 TS

TR

(
TS

TR

) −α
ν((1−ρ)−α)+α

(
θ

1− θ

) α−(1−ρ)
ν((1−ρ)−α)+α

(
ER

ES

) α−(1−ρ)
(ν((1−ρ)−α)+α)(1−γ)

 α
(1−ρ)−α


(1−ρ)−α

α

Γ
(

1− 1
α

)
(28)

Further simplification gives,

NR = TR

1 +
(

TS

TR

) αν((1−ρ)−α)
(ν((1−ρ)−α)+α)((1−ρ)−α)

(
1− θ

θ

) α
ν((1−ρ)−α)+α

(
ES

ER

) α
(ν((1−ρ)−α)+α)(1−γ)


(1−ρ)−α

α

Γ
(

1− 1
α

)
(29)

Similarly for NS we have,

NS = TS

1 +
(

TS

TR

) −αν((1−ρ)−α)
(ν((1−ρ)−α)+α)((1−ρ)−α)

(
1− θ

θ

) −α
ν((1−ρ)−α)+α

(
ES

ER

) −α
(ν((1−ρ)−α)+α)(1−γ)


(1−ρ)−α

α

Γ
(

1− 1
α

)
(30)

By substituting the expressions for NR and NS into the production function we

obtain the competitive equilibrium level of output YCE.
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D The First-Best Allocation

We equalize the first order conditions for this problem render (note that the term

containing the Γ function cancels out because it is a constant):

θTν
R

(
pFB

R

)ν
α−(1−ρ)

α −1
= Tν

S(1− θ)
(

pFB
S

)ν
α−(1−ρ)

α −1
(31)

Since the two masses have to add up to one, we get that

pFB
R =

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α +1

and pFB
S = 1

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α +1

.

Plugging back into the definition of efficiency units we get the allocation of effi-

ciency units chosen by the social planner:

NFB
R = TR

 (1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


α−(1−ρ)

α

Γ
(

1− 1
α

)
(32)

NFB
S = TS

 1
(1−θ)

θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


α−(1−ρ)

α

Γ
(

1− 1
α

)
(33)

Given the labor inputs chosen by the planner, the efficient level of output is

YFB =

[
θTν

R

 (1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α

(1−θ)
θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


ν

α−(1−ρ)
α

+

(1− θ)Tν
R

 1
(1−θ)

θ

α
ν(α−(1−ρ))−α TS

TR

αν
ν(α−(1−ρ))−α + 1


ν

α−(1−ρ)
α ]1/ν

Γ
(

1− 1
α

) (34)
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